F2 Lanczos revisited
نویسندگان
چکیده
We present a new variant of the block Lanczos algorithm for finding vectors in the kernel of a symmetric matrix over F2. Our algorithm is at least as efficient as that of Peter Montgomery [6], while the sequence of matrices Wi constructed here have different algebraic properties that may be useful in eventually providing a provable upper bound on the time required to solve this problem. Namely, our Wi satisfy W T i Wj = 0 for i 6= j as opposed to W T i AWj = 0 in [6].
منابع مشابه
Nested Lanczos : Implicitly Restarting a Lanczos Algorithm Nested Lanczos : Implicitly Restarting a Lanczos Algorithm
In this text, we present a generalisation of the idea of the Implicitly Restarted Arnoldi method to the nonsymmetric Lanczos algorithm, using the two-sided Gram-Schmidt process or using a full Lanczos tridi-agonalisation. The Implicitly Restarted Lanczos method can be combined with an implicit lter. It can also be used in case of breakdown and ooers an alternative for look-ahead.
متن کاملParallel Efficiency of the Lanczos Method for Eigenvalue Problems
Two of the commonly used versions of the Lanczos method for eigenvalues problems are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk, we will address two questions, is the shift-and-invert Lanczos method a viable option on massively parallel machines and which one is more appropriate for a given eigenvalue problem?
متن کاملThe Radau-Lanczos Method for Matrix Functions
Analysis and development of restarted Krylov subspace methods for computing f(A)b have proliferated in recent years. We present an acceleration technique for such methods when applied to Stieltjes functions f and Hermitian positive definite matrices A. This technique is based on a rank-one modification of the Lanczos matrix derived from a connection between the Lanczos process and Gauss–Radau q...
متن کاملError Analysis of the Lanczos Algorithm for the Nonsymmetric Eigenvalue Problem
This paper presents an error analysis of the Lanczos algorithm in finite-precision arithmetic for solving the standard nonsymmetric eigenvalue problem, if no breakdown occurs. An analog of Paige's theory on the relationship between the loss of orthogonality among the Lanczos vectors and the convergence of Ritz values in the symmetric Lanczos algorithm is discussed. The theory developed illustra...
متن کاملBlock Lanczos Tridiagonalization of Complex Symmetric Matrices
The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block ...
متن کامل